• Acids have been used in spy movies and other thrillers to dissolve the metal bars of a prison cell.
When you first put a Sour Patch Kid in your mouth, it tastes sour.
The taste is caused by a white powder coating, a mixture of citric acid and tartaric acid.
The citric and tartaric acids from a Sour Patch Kid combine with saliva in your mouth, and they produce H^+ ions. Those H^+ ions react with protein molecules on your tongue.
The protein molecules change shape, sending an electrical signal (a nerve impulse) to your brain that you experience as a sour taste.
International Spy Movies: Acids Dissolve Many Metals

- James Bond often carries an acid-filled gold pen. Bond’s pen is made of gold because gold is one of the few metals that is not dissolved by most acids.
- When Bond is imprisoned, he squirts some acid out of his pen and onto the iron bars of his cell.
- With enough acid, it would be possible to dissolve the iron bars of a prison cell, but it would take more acid than the amount that fits in a pen.
- We see here: A small piece of aluminum placed in hydrochloric acid dissolves away in about 10 minutes.
Acids have the following properties:

• Acids have a sour taste.
• Acids dissolve many metals.
• Acids turn blue litmus paper red.
Hydrochloric acid is found in most chemistry laboratories.

It is used in industry to clean metals, prepare and process foods, and refine metal ores.

Hydrochloric acid is the main component of stomach acid. Hydrochloric acid helps break down food, and it kills harmful bacteria that might enter the body through food. The sour taste associated with indigestion is caused by the stomach’s hydrochloric acid refluxing up into the esophagus.
Acid Examples: Sulfuric and Nitric Acid

- Sulfuric acid is the most widely produced chemical in the United States; annual U.S. production of sulfuric acid exceeds 36 million tons.
- Sulfuric acid and nitric acid are commonly used in the laboratory.
- Sulfuric acid and nitric acid are used in the manufacture of fertilizers, explosives, dyes, and glue.
- Sulfuric acid is contained in most automobile batteries.

© 2015 Pearson Education, Inc.
Acid Examples: Acetic Acid

- Acetic acid forms in improperly stored wines.
- The word *vinegar* originates from the French *vin aigre*, which means “sour wine.”
- Acetic acid is an example of a **carboxylic acid**, an acid containing the COOH grouping of atoms, known as the carboxylic acid group.
Acid Examples: Carboxylic Acids

- We often find carboxylic acids in substances derived from living organisms.
- Other carboxylic acids include citric acid, the main acid in lemons and limes, and malic acid, an acid found in apples, grapes, and wine.
Bases have the following properties:

- Bases have a bitter taste.
- Bases have a slippery feel.
- Bases turn red litmus paper blue.
Bases Feel Slippery

- All of these consumer products contain bases.
- Bases feel slippery because they react with oils on your skin to form soaplike substances.
- Soap itself is basic, and its slippery feel is characteristic of bases.
- Some household cleaning solutions, such as ammonia, are also basic and have the typical slippery feel of a base.
Bases Taste Bitter

- Bases are less common in foods than acids because of their bitter taste.
- Our aversion to the taste of bases is probably an adaptation to protect us against **alkaloids**, organic bases found in plants.
- Alkaloids are often poisonous—the active component of hemlock, for example, is the alkaloid coniine—and their bitter taste warns us against eating them.
- Some foods contain small amounts of base.
- Coffee is acidic overall, but bases present in coffee—such as caffeine—impart a bitter flavor.
Sodium hydroxide and potassium hydroxide are found in most chemistry laboratories. They are used in processing petroleum and cotton, and in soap and plastic manufacturing.

Sodium hydroxide is the active ingredient in products such as Drano that work to unclog drains.

Sodium bicarbonate can be found in most homes as baking soda and is an active ingredient in many antacids.

When taken as an antacid, sodium bicarbonate neutralizes stomach acid, relieving heartburn and sour stomach.
The Arrhenius Definition of Acids

• **Acid**—An acid produces H^+ ions in aqueous solution.

HCl is a covalent compound and does not contain ions. In water, HCl ionizes to form H^+ ions and Cl^- ions.
The Arrhenius Definition of Acids and Bases

• The H^+ ions are highly reactive. In aqueous solution, they bond to water molecules according to the reaction.

\[
\text{H}^+ + \text{H}_2\text{O} \rightarrow \text{H}_3\text{O}^+\text{aq}
\]

The H$_3$O$^+$ ion is the **hydronium ion**.

• In water, H$^+$ ions *always* associate with H$_2$O molecules.

• Chemists often use H$^+$(aq) and H$_3$O$^+$(aq) interchangeably to refer to a hydronium ion.
In the Molecular Formula for an Acid, We Often Write the Ionizable Hydrogen First

We write the formula for formic acid as:

\[
\text{HCHO}_2
\]

We represent the structure of formic acid with its structural formula:

\[
\begin{align*}
\text{O} & \quad \text{Ionizable hydrogen} \\
\text{H-C-O-H} & \quad \text{Non-ionizable hydrogen}
\end{align*}
\]

The structural formula indicates how the atoms are bonded together; the molecular formula indicates the number of each type of atom.
The Arrhenius Definition of Bases

• **Base**—A base produces OH^- ions in aqueous solution.

NaOH is an Arrhenius base because it produces OH^- ions in solution. NaOH is an ionic compound and contains Na^+ ions and OH^- ions. When NaOH is added to water, it dissociates into its component ions.

Molecular compounds containing an OH group, such as methanol, CH$_3$OH, do not dissociate in solution and therefore do not act as bases.

$$\text{NaOH}(aq) \rightarrow \text{Na}^+ (aq) + \text{OH}^- (aq)$$
The Arrhenius Definition of Acids and Bases

- Under the Arrhenius definition, acids and bases naturally combine to form water, neutralizing each other in the process.

\[\text{H}^+(aq) + \text{OH}^-(aq) \rightarrow \text{H}_2\text{O}(l) \]
Comparing the Arrhenius and the Brønsted–Lowry Definitions of Acids and Bases

• The Arrhenius definition of acids and bases cannot explain why some substances act as bases even though they do not contain OH\(^-\).
• The Arrhenius definition does not apply to nonaqueous solvents.
• The Brønsted–Lowry definition of acids and bases applies to a wider range of acid–base phenomena.
• This definition focuses on the *transfer* of H\(^+\) ions in an acid–base reaction.
• Since an H\(^+\) ion is a proton—a hydrogen atom with its electron taken away—this definition focuses on the idea of a *proton donor* and a *proton acceptor*.
Brønsted–Lowry definition

- **Acid**—An acid is a proton *donor*.
- **Base**—A base is a proton *acceptor*.

- In 1923, Johannes Brønsted, working in Denmark, and Thomas Lowry, working in England, developed the concept of proton transfer in acid–base behavior independently and simultaneously.
The Brønsted–Lowry Definition of Acids

• According to this definition, HCl is a Brønsted–Lowry acid because, in solution, it donates a proton to water.

\[
\text{HCl(aq)} + \text{H}_2\text{O(l)} \rightarrow \text{H}_3\text{O}^+(aq) + \text{Cl}^-(aq)
\]

• This definition more clearly accounts for what happens to the H\(^+\) ion from an acid: it associates with a water molecule to form H\(_3\)O\(^+\) (a hydronium ion).
The Brønsted–Lowry Definition of Bases

• The Brønsted–Lowry definition works well with bases such as \(\text{NH}_3 \) that do not inherently contain \(\text{OH}^- \) ions but still produce \(\text{OH}^- \) ions in solution.

• \(\text{NH}_3 \) is a Brønsted–Lowry base because it accepts a proton from water.

\[
\text{NH}_3(aq) + \text{H}_2\text{O}(l) \rightleftharpoons \text{NH}_4^+(aq) + \text{OH}^-(aq)
\]
In the Brønsted–Lowry Definition, Acids (Proton Donors) and Bases (Proton Acceptors) Always Occur Together

• In the reaction between HCl and H₂O, HCl is the proton donor (acid) and H₂O is the proton acceptor (base).

\[
\text{HCl}(aq) + \text{H}_2\text{O}(l) \rightarrow \text{H}_3\text{O}^+(aq) + \text{Cl}^-(aq)
\]

Acid (Proton donor) \hspace{1cm} \text{Base} (Proton acceptor)

• In the reaction between NH₃ and H₂O, H₂O is the proton donor (acid) and NH₃ is the proton acceptor (base).

\[
\text{NH}_3(aq) + \text{H}_2\text{O}(l) \rightleftharpoons \text{NH}_4^+(aq) + \text{OH}^-(aq)
\]

Base \hspace{1cm} Acid \hspace{1cm} Conjugate acid \hspace{1cm} Conjugate base
Acid Base Defined by Behavior

• Some substances—such as water—can act as acids or bases either accepting or donating a proton.
• Substances that can act as acids or bases are amphoteric.
• What happens when an equation representing Brønsted–Lowry acid–base behavior is reversed?

\[
\text{NH}_4^+(aq) \quad + \quad \text{OH}^-(aq) \quad \rightleftharpoons \quad \text{NH}_3(aq) \quad + \quad \text{H}_2\text{O}(l)
\]

Base (Proton acceptor) \quad \quad Acid (Proton donor)

• Now NH\(_4^+\) is the proton donor (acid) and OH\(^-\) is the proton acceptor (base).
• What was the base (NH\(_3\)) has become the acid (NH\(_4^+\)), and what was the acid (H\(_2\)O) has become the base (OH\(^-\)).
• NH\(_3\) and NH\(_4^+\) are often referred to as a conjugate acid–base pair, two substances related to each other by the transfer of a proton.
Any two substances related to each other by the transfer of a proton can be considered a conjugate acid–base pair.
Identifying Brønsted–Lowry Acids and Bases and Their Conjugates

$$\text{H}_2\text{SO}_4(aq) + \text{H}_2\text{O}(l) \rightarrow \text{HSO}_4^-(aq) + \text{H}_3\text{O}^+(aq)$$

In an acid–base reaction:

• A base accepts a proton and becomes a conjugate acid.
• An acid donates a proton and becomes a conjugate base.
Reactions of Acids and Bases: Neutralization Reactions

- When an acid and a base are mixed, the H^+ from the acid combines with the OH^- from the base to form H_2O.

 \[
 \text{HCl}(aq) + \text{KOH}(aq) \rightarrow \text{H}_2\text{O}(l) + \text{KCl}(aq)
 \]

 Acid Base Water Salt

- Acid–base reactions generally form water and a salt—an ionic compound—that usually remains dissolved in the solution. The salt contains the cation from the base and the anion from the acid.

- The net ionic equation for many neutralization reactions is:

 \[
 \text{H}^+(aq) + \text{OH}^-(aq) \rightarrow \text{H}_2\text{O}(l)
 \]
Reactions of Acids and Bases: Neutralization Reactions

- The reaction of carbonates or bicarbonates (compounds containing CO_3^{2-} or HCO_3^-) with acids produces water, gaseous carbon dioxide, and a salt.
- This kind of reaction is also called a *gas evolution reaction.*

$$\text{HCl}(aq) + \text{NaHCO}_3(aq) \rightarrow \text{H}_2\text{O}(l) + \text{CO}_2(g) + \text{NaCl}(aq)$$
Acids React with Metals in a Way That Causes Metals to Go Into Solution

- The reaction between an acid and a metal usually produces hydrogen gas and a dissolved salt containing the metal ion.

$$2 \text{HCl}(aq) + \text{Mg}(s) \rightarrow \text{H}_2(g) + \text{MgCl}_2(aq)$$
Some metals do not readily react with acids.

- If the bars that imprisoned James Bond were made of gold, a pen filled with hydrochloric acid would not dissolve those bars.

- We will discuss the way to determine whether a particular metal dissolves in an acid in Chapter 16.
Reactions of Acids with Metal Oxides

Acids react with metal oxides to produce water and a dissolved salt.

- Hydrochloric acid reacts with potassium oxide to form water and potassium chloride.

\[
2 \text{HCl}(aq) + \text{K}_2\text{O}(s) \rightarrow \text{H}_2\text{O}(l) + 2 \text{KCl}(aq)
\]

- Hydrobromic acid reacts with magnesium oxide to form water and magnesium bromide.

\[
2 \text{HBr}(aq) + \text{MgO}(s) \rightarrow \text{H}_2\text{O}(l) + \text{MgBr}_2(aq)
\]
The most important base reactions are those in which a base neutralizes an acid.

One other kind of base reaction that we cover here is the reaction of sodium hydroxide with aluminum and water.

\[2 \text{NaOH(aq)} + 2 \text{Al(s)} + 6 \text{H}_2\text{O(l)} \rightarrow 2 \text{NaAl(OH)}_4(aq) + 3 \text{H}_2(g) \]

Aluminum is one of the few metals that dissolves in a base.

If your household plumbing pipes were made of aluminum, it would not be safe to use NaOH (the main ingredient in many drain-opening products) to unclog your drain.

Fortunately, the use of aluminum pipe is forbidden in most building codes.
Acid–Base Titration: A Way to Quantify the Amount of Acid or Base in a Solution

• Solution stoichiometry can be applied to a common laboratory procedure called a titration.

• In a **titration**, a substance in a solution of **known** concentration is reacted with another substance in a solution of **unknown** concentration.

• In the acid–base reaction between hydrochloric acid and sodium hydroxide, the net ionic equation is as follows:

\[
\text{HCl}(aq) + \text{NaOH}(aq) \rightarrow \text{H}_2\text{O}(l) + \text{NaCl}(aq)
\]
• An HCl solution is represented by this molecular diagram.

• In the H\(^+\) solution, the Cl\(^-\) ions and the H\(_2\)O molecules will not be involved in the reaction and have been omitted from the representation for clarity.

• In the OH\(^-\) solution, the Na\(^+\) ions and the H\(_2\)O molecules will not be involved in the reaction and have been omitted from the representation for clarity.
In titrating this sample, we slowly add a solution of known concentration to the solution of unknown concentration in the flask.

At the equivalence point, neither reactant is present in excess, and both are limiting.

The number of moles of the reactants are related by the reaction stoichiometry.
Acid–Base Titration: A Way to Quantify the Amount of Acid or Base in a Solution

- As the OH\(^-\) is added, it reacts with and neutralizes the H\(^+\), forming water.
- At the **equivalence point**—the point in the titration when the number of moles of OH\(^-\) added equals the number of moles of H\(^+\) originally in solution—the titration is complete.
- The equivalence point is usually signaled by an **indicator**, a dye whose color depends on the acidity of the solution.
- In most laboratory titrations, the concentration of one of the reactant solutions is unknown and the concentration of the other is precisely known.
- By carefully measuring the volume of each solution required to reach the equivalence point, the concentration of the unknown solution can be determined.
When the NaOH and HCl reach stoichiometric proportions (1 mol of OH\(^-\) for every 1 mol of H\(^+\)), the indicator (phenolphthalein) changes to pink, signaling the equivalence point of the titration. Phenolphthalein is an indicator that is colorless in acidic solution and pink in basic solution.
Acid–Base Titration Calculation

• The titration of 10.00 mL of an HCl solution of unknown concentration requires 12.54 mL of a 0.100 M NaOH solution to reach the equivalence point.

• What is the concentration of the unknown HCl solution?

GIVEN:

• 10.00 mL HCl solution

• 12.54 mL of a 0.100 M NaOH solution

FIND: concentration of HCl solution
Acid–Base Titration Calculation

• First, you must write the balanced chemical equation for the reaction between the acid and the base.

\[\text{HCl}(aq) + \text{NaOH}(aq) \rightarrow \text{H}_2\text{O}(l) + \text{NaCl}(aq) \]

• The solution map has two parts.

SOLUTION MAP:

\[\frac{\text{mL NaOH}}{1000 \text{ mL}} \rightarrow \frac{\text{L NaOH}}{0.100 \text{ mol NaOH}} \rightarrow \frac{\text{mol NaOH}}{1 \text{ mol HCl}} \rightarrow \text{mol HCl} \]

\[\text{mol HCl, volume HCl solution} \rightarrow \text{molarity} \]

\[M = \frac{\text{mol}}{\text{L}} \]
1 mol HCl: 1 mol NaOH (from balanced chemical equation)

Molarity (M) = \(\frac{\text{mol solute}}{\text{L solution}} \) (definition of molarity, from Section 13.6)

• The solution has two parts.

SOLUTION:

\[
12.54 \text{ mL NaOH} \times \frac{1 \text{ L}}{1000 \text{ mL}} \times \frac{0.100 \text{ mol NaOH}}{1 \text{ L NaOH}} \times \frac{1 \text{ mol HCl}}{1 \text{ mol NaOH}}
\]

\[
= 1.25 \times 10^{-3} \text{ mol HCl}
\]

Molarity = \(\frac{1.25 \times 10^{-3} \text{ mol HCl}}{0.01000 \text{ L}} \) = 0.125 M
• Hydrochloric acid (HCl) and hydrofluoric acid (HF) appear to be similar, but there is an important difference between these two acids.
• HCl is an example of a **strong acid**, one that completely ionizes in solution.
• HF is a **weak acid**, one that does not completely ionize in solution.
When HCl dissolves in water, it completely ionizes into H_3O^+ and Cl^- ions. The solution contains no intact HCl.
Conductivity of Pure Water

• Pure water is not a good conductor of electricity because it has relatively few charged particles.
• The danger of using electrical devices—such as a hair dryer—while sitting in the bathtub is that water is seldom pure and often contains dissolved ions.
• If the device were to come in contact with the water, dangerously high levels of electricity could flow through the water and through your body.
Conductivity of a Strong Electrolyte Solution

(a) Pure water will not conduct electricity. (b) The presence of ions in an HCl solution results in the conduction of electricity, causing the lightbulb to light.
Six substances are considered strong acids in aqueous solution.

Five acids in the table are monoprotic acids, acids containing only one ionizable proton.

Sulfuric acid is an example of a diprotic acid, an acid that contains two ionizable protons.

An ionizable proton is one that becomes an H\(^+\) ion in solution.

Table 14.3 Strong Acids

<table>
<thead>
<tr>
<th>hydrochloric acid (HCl)</th>
<th>nitric acid (HNO(_3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>hydrobromic acid (HBr)</td>
<td>perchloric acid (HClO(_4))</td>
</tr>
<tr>
<td>hydroiodic acid (HI)</td>
<td>sulfuric acid (H(_2)SO(_4)) (diprotic)</td>
</tr>
</tbody>
</table>
A Weak Acid

When HF dissolves in water, only a fraction of the dissolved molecules ionize into H_3O^+ and F^- ions. The solution contains many intact HF molecules.

$$\text{HF}(aq) + \text{H}_2\text{O}(l) \rightleftharpoons \text{H}_3\text{O}^+(aq) + \text{F}^-(aq)$$

Double arrow indicates partial ionization
Conductivity of a Weak Electrolyte Solution

(a) Pure water will not conduct electricity.
(b) An HF solution contains some ions, but most of the HF is intact. The light glows only dimly.
There are many weak acids—some organic and some inorganic. Most carboxylic acids are weak acids.

- Two of the weak acids shown here are diprotic, and one is triprotic.
- Sulfurous acid and carbonic acid are weak in both of their ionizable protons, and phosphoric acid is weak in all three of its ionizable protons.
- Sulfuric acid (listed with the strong acids) is a diprotic acid that is strong in its first ionizable proton but weak in its second ionizable proton.

Table of Some Common Weak Acids

<table>
<thead>
<tr>
<th>Acids</th>
<th>Strong acids</th>
</tr>
</thead>
<tbody>
<tr>
<td>hydrofluoric acid (HF)</td>
<td>sulfuric acid (H₂SO₃)</td>
</tr>
<tr>
<td>acetic acid (HC₂H₃O₂)</td>
<td>carbonic acid (H₂CO₃)</td>
</tr>
<tr>
<td>formic acid (HCHO₂)</td>
<td>phosphoric acid (H₃PO₄)</td>
</tr>
</tbody>
</table>

© 2015 Pearson Education, Inc.
What Is the H_3O^+ Concentration in Each Solution?

• 1.5 M HCl?
Since HCl is a strong acid, it completely ionizes. The concentration of H_3O^+ will be 1.5 M.

• 3.0 M HC$_2$H$_3$O$_2$?
Since HC$_2$H$_3$O$_2$ is a weak acid, it partially ionizes. The calculation of the exact concentration of H_3O^+ is beyond the scope of this text, but we know that it will be less than 3.0 M.
A strong base is one that completely dissociates in solution.

TABLE 14.5 Strong Bases

<table>
<thead>
<tr>
<th>lithium hydroxide (LiOH)</th>
<th>strontium hydroxide (Sr(OH)₂)</th>
</tr>
</thead>
<tbody>
<tr>
<td>sodium hydroxide (NaOH)</td>
<td>calcium hydroxide (Ca(OH)₂)</td>
</tr>
<tr>
<td>potassium hydroxide (KOH)</td>
<td>barium hydroxide (Ba(OH)₂)</td>
</tr>
</tbody>
</table>

Unlike diprotic acids, which ionize in two steps, bases containing 2 OH⁻ ions dissociate in one step.
An NaOH solution contains no intact NaOH—it has all dissociated to form Na\(^+\) and OH\(^-\).
• **A weak base** is analogous to a weak acid. Unlike strong bases that contain OH\(^-\) and dissociate in water, the most common weak bases produce OH\(^-\) by accepting a proton from water, causing the water to form OH\(^-\) ions.

\[
B(aq) + H_2O(l) \leftrightharpoons BH^+(aq) + OH^-(aq)
\]

• In this equation, \(B\) is generic for a weak base.
When \(\text{NH}_3 \) dissolves in water, it partially ionizes to form \(\text{NH}_4^+ \) and \(\text{OH}^- \). However, only a fraction of the molecules ionize. Most molecules remain as \(\text{NH}_3 \).
There are many weak bases.
Organic amines are weak bases.

TABLE 14.6 Some Weak Bases

<table>
<thead>
<tr>
<th>Base</th>
<th>Ionization Reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>ammonia (NH₃)</td>
<td>(\text{NH}_3(aq) + \text{H}_2\text{O}(l) \rightleftharpoons \text{NH}_4^+(aq) + \text{OH}^-(aq))</td>
</tr>
<tr>
<td>pyridine (C₅H₅N)</td>
<td>(\text{C}_5\text{H}_5\text{N}(aq) + \text{H}_2\text{O}(l) \rightleftharpoons \text{C}_5\text{H}_5\text{NH}^+(aq) + \text{OH}^-(aq))</td>
</tr>
<tr>
<td>methylamine (CH₃NH₂)</td>
<td>(\text{CH}_3\text{NH}_2(aq) + \text{H}_2\text{O}(l) \rightleftharpoons \text{CH}_3\text{NH}_3^+(aq) + \text{OH}^-(aq))</td>
</tr>
<tr>
<td>ethylamine (C₂H₅NH₂)</td>
<td>(\text{C}_2\text{H}_5\text{NH}_2(aq) + \text{H}_2\text{O}(l) \rightleftharpoons \text{C}_2\text{H}_5\text{NH}_3^+(aq) + \text{OH}^-(aq))</td>
</tr>
<tr>
<td>bicarbonate ion (HCO₃⁻)</td>
<td>(\text{HCO}_3^-(aq) + \text{H}_2\text{O}(l) \rightleftharpoons \text{H}_2\text{CO}_3(aq) + \text{OH}^-(aq))</td>
</tr>
</tbody>
</table>

The bicarbonate ion must occur with a positively charged ion such as Na⁺ that serves to balance the charge but does not have any part in the ionization reaction. It is the bicarbonate ion that makes sodium bicarbonate (NaHCO₃) basic.
What Is the OH$^{-}$ Concentration in Each Solution?

- **2.25 M KOH?**
 Since KOH is a strong base, it completely dissociates into K$^{+}$ and OH$^{-}$ in solution. The concentration of OH$^{-}$ is 2.25 M.

- **0.35 M CH$_3$NH$_2$ methyl amine?**
 Since CH$_3$NH$_2$ is a weak base, it only partially ionizes water. We cannot calculate the exact concentration of OH$^{-}$ here, but we know it is less than 0.35 M.
Water: Acid and Base in One

• Water is *amphoteric*; it can act as either an acid or a base.

• Even in pure water, water acts as an acid and a base with itself, a process called self-ionization.

\[
\begin{align*}
\text{H}_2\text{O}(l) & \quad + \quad \text{H}_2\text{O}(l) & \leftrightarrow & \quad \text{H}_3\text{O}^+(aq) \quad + \quad \text{OH}^-(aq)
\end{align*}
\]

Water acting as both an acid and a base

(Proton donor) \quad (Proton acceptor)
The Self-Ionization Reaction of Water

Occurs only to a very small extent, resulting in equal and small concentrations of \(\text{H}_3\text{O}^+ \) and \(\text{OH}^- \)

- For pure water at 25 °C:
 \[
 [\text{H}_3\text{O}^+] = [\text{OH}^-] = 1.0 \times 10^{-7} \text{ M}
 \]

The ion product constant for water is:

\[
[\text{H}_3\text{O}^+] \times [\text{OH}^-] = (1.0 \times 10^{-7})(1.0 \times 10^{-7})
\]

\[K_w = 1.0 \times 10^{-14}\]

In a neutral solution, \([\text{H}_3\text{O}^+] = [\text{OH}^-]\).
Using K_w in Calculations

Calculate [OH^-] in the solution and determine whether the solution is acidic, basic, or neutral.

GIVEN:
- $[\text{H}_3\text{O}^+] = 7.5 \times 10^{-5}$ M
- $[\text{H}_3\text{O}^+][\text{OH}^-] = 1.0 \times 10^{-14}$

SOLUTION:
- $[7.5 \times 10^{-5}][\text{OH}^-] = 1.0 \times 10^{-14}$
- $[\text{OH}^-] = 1.3 \times 10^{-10}$ M

$[\text{H}_3\text{O}^+] > [\text{OH}^-]$, acidic solution
To Summarize Water Behavior, at 25 °C

• In a neutral solution,
 \([\text{H}_3\text{O}^+] = [\text{OH}^-] = 1.0 \times 10^{-7} \text{ M}\)

• In an acidic solution,
 \([\text{H}_3\text{O}^+] > 1.0 \times 10^{-7} \text{ M}\) \hspace{1cm} \([\text{OH}^-] < 1.0 \times 10^{-7} \text{ M}\)

• In a basic solution,
 \([\text{H}_3\text{O}^+] < 1.0 \times 10^{-7} \text{ M}\) \hspace{1cm} \([\text{OH}^-] > 1.0 \times 10^{-7} \text{ M}\)

• In all aqueous solutions,
 \([\text{H}_3\text{O}^+] [\text{OH}^-] = 1.0 \times 10^{-14}\)
Interdependence of $[\text{H}_3\text{O}^+]$ and $[\text{OH}^-]$ in Acidic and Basic Solution

$\text{[H}_3\text{O}^+]$
10^{-0} 10^{-1} 10^{-2} 10^{-3} 10^{-4} 10^{-5} 10^{-6} 10^{-7} 10^{-8} 10^{-9} 10^{-10} 10^{-11} 10^{-12} 10^{-13} 10^{-14}

Acidic

Basic

$\text{[OH}^-]$
10^{-14} 10^{-13} 10^{-12} 10^{-11} 10^{-10} 10^{-9} 10^{-8} 10^{-7} 10^{-6} 10^{-5} 10^{-4} 10^{-3} 10^{-2} 10^{-1} 10^{0}
The pH and pOH Scales: Ways to Express Acidity and Basicity

At 25 °C:

- pH < 7 \textit{acidic} solution
- pH > 7 \textit{basic} solution
- pH = 7 \textit{neutral} solution
The pH Scale Is a Logarithmic Scale

- A decrease of 1 unit on the pH scale corresponds to an increase in H_3O^+ concentration by a factor of 10.

<table>
<thead>
<tr>
<th>pH</th>
<th>$[\text{H}_3\text{O}^+]$</th>
<th>$[\text{H}_3\text{O}^+]$ Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>10^{-4}</td>
<td>![4 circles]</td>
</tr>
<tr>
<td>3</td>
<td>10^{-3}</td>
<td>![3 circles]</td>
</tr>
<tr>
<td>2</td>
<td>10^{-2}</td>
<td>![2 circles]</td>
</tr>
</tbody>
</table>
Calculate the pH of the solution and indicate whether the solution is acidic or basic.

GIVEN: \([H_3O^+] = 1.8 \times 10^{-4}\) M

SOLUTION:
\[
pH = -\log[H_3O^+]
\]
\[
pH = -\log(1.8 \times 10^{-4})
\]
\[
pH = -(−3.74)
\]
\[
pH = 3.74
\]
\[
pH < 7, \text{ acidic solution}
\]
Calculate the $[\text{H}_3\text{O}^+]$ for a solution with a pH of 4.80.

GIVEN: pH = 4.80

SOLUTION:

$4.80 = -\log[\text{H}_3\text{O}^+]$

$-4.80 = \log[\text{H}_3\text{O}^+]$

$10^{-4.80} = 10^{\log[\text{H}_3\text{O}^+]}$

$1.6 \times 10^{-5} \text{ M} = [\text{H}_3\text{O}^+]$
Calculate the pOH of the solution and indicate whether the solution is acidic or basic.

GIVEN: \([\text{OH}^-] = 1.8 \times 10^{-4} \text{ M}\)

SOLUTION:

\[
p\text{OH} = -\log[\text{OH}^-] \\
p\text{OH} = -\log(1.8 \times 10^{-4}) \\
p\text{OH} = -(−3.74) \\
p\text{OH} = 3.74 \\
pH + p\text{OH} = 14.00 \\
14.00 - 3.74 = pH = 10.26, \textbf{basic} solution
\]
• Calculate the [OH\(^-\)] for solution with a pOH of 4.80.

GIVEN: pOH = 4.80
SOLUTION:

\[
4.80 = -\log[OH^-] \\
-4.80 = \log[OH^-] \\
10^{-4.80} = 10^{\log[OH^-]} \\
1.6 \times 10^{-5} \text{ M} = [OH^-] \\
\]

\[
[H_3O^+][OH^-] = 1.0 \times 10^{-14} \\
[H_3O^+] = 6.25 \times 10^{-10} < [OH^-] = 1.6 \times 10^{-5}, \text{ basic solution}
\]
• Buffers contain significant amounts of both a weak acid and its conjugate base.
• The weak acid neutralizes added base.
• The conjugate base neutralizes added acid.

Human blood is a buffer.
• In healthy individuals, blood pH is between 7.36 and 7.40.
• If blood pH were to drop below 7.0 or rise above 7.8, death would result.
Buffers: Solutions That Resist pH Change

• In the acetic acid sodium acetate buffer system, with added base, acetic acid reacts:

\[
\text{NaOH}(aq) + \text{HC}_2\text{H}_3\text{O}_2(aq) \rightarrow \text{H}_2\text{O}(l) + \text{NaC}_2\text{H}_3\text{O}_2(aq)
\]

 Base Acid

• In the acetic acid sodium acetate buffer system, with added acid, acetate ion reacts:

\[
\text{HCl}(aq) + \text{NaC}_2\text{H}_3\text{O}_2(aq) \rightarrow \text{HC}_2\text{H}_3\text{O}_2(aq) + \text{NaCl}(aq)
\]

 Acid Base
Buffers: A Buffer Contains Significant Amounts of a Weak Acid and Its Conjugate Base

The acid consumes any added base, and the base consumes any added acid. In this way, a buffer resists pH change.
Chemistry and Health: The Danger of Antifreeze

• Ethylene glycol is an alcohol, and the first stage of ethylene glycol poisoning is a drunken state.
• Once ethylene glycol begins to metabolize, the second and more deadly stage begins.
• Ethylene glycol is metabolized in the liver into glycolic acid, which enters the bloodstream.
• The glycolic acid overwhelms the blood’s natural buffering system, causing blood pH to drop to dangerously low levels.
• At this point, the poisoned animal may begin hyperventilating in an effort to overcome the acidic blood’s reduced ability to carry oxygen.
• If no treatment is administered, the animal will eventually go into a coma and die.
Acid rain is the result of sulfur oxides and nitrogen oxides emitted by fossil fuel combustion. These oxides react with water to form sulfuric acid and nitric acid, which fall as acid rain. Acids dissolve metals and metal oxides, so building materials composed of these substances are susceptible to acid rain.
Acids have a sour taste; acids dissolve metals. Bases have a bitter taste, a slippery feel.

Arrhenius Definition:
Acids produce H^+ in solution. Bases produce OH^- in solution.

Brønsted–Lowry Definition:
Acids donate a proton. Bases accept a proton.
Chapter 14 in Review

Reactions of Acids and Bases:

- Neutralization reactions
- Acid–metal reactions
- Acid–metal oxide reactions
- Acid–base titration
- Strong and weak acids and bases
- Self-ionization of water
- pH and pOH scales
- Buffers
Chemical Skills Learning Objectives

1. LO: Identify common acids and bases and describe their key characteristics.

2. LO: Identify Arrhenius acids and bases.

3. LO: Identify Brønsted–Lowry acids and bases and their conjugates.

4. LO: Write equations for neutralization reactions.

5. LO: Write equations for the reactions of acids with metals and with metal oxides.

6. LO: Use acid–base titration to determine the concentration of an unknown solution.

7. LO: Determine \([H_3O^+]\) and \([OH^-]\) in solutions.

8. LO: Identify strong and weak acids and strong and weak bases.

9. LO: Find the concentration of \(H_3O^+\) or \(OH^-\) from \(K_w\).

10. LO: Calculate pH or pOH from \([H_3O^+]\) or \([OH^-]\).

11. LO: Calculate \([H_3O^+]\) or \([OH^-]\) from pH or pOH.